
Estimating the range of a function in an

online setting.

John A. Mount ?

jmount@mzlabs.com

Abstract

Consider an unknown function L(·) : {1, · · · , d} → {1, · · · , r} with range R =
{L(i)|i = 1, · · · , d}. Given d, r, ε, δ > 0 we show how to compute an estimate p̃
such that with probability at least 1 − δ we have ||R|/r − p̃| ≤ εp̃. This is an
estimate with a fixed relative error, which is stronger than finding an estimate with
a fixed absolute error. This calculation can be performed efficiently in one pass
through the domain of L (allowing the the method to be used in online situations)
using only O

(
log r (log log r + log 1/δ) /ε2

)
words of storage. The method is based

on pairwise-independent pseudo-random variables.

Key words: Keywords: analysis of algorithms, online algorithms, pairwise
independence, pseudo-random generation, randomized algorithms, sampling.

1 Problem and Notation

Assume we have access to an unknown function L(·) : {1, · · · , d} → {1, · · · , r}
and memory of size polynomial in log(r), log(1/δ), 1/ε. Let R be the range
of L(·): {L(x)|x = 1, · · · , d}. Our question is: can we estimate p = |R|/r to
within a small relative error? We assume that L(·) is available only in an online
fashion. That is we are given d, r, δ, ε > 0 and have access to an oracle that
returns the tuple (i, L(i)) on the ith access (results after dth access undefined).
However, for convenience we will argue as if we had direct read-once access to
L(·).

Our interest in this problem arose after solving a problem in combinatorial
chemistry [5] using a dynamic programming approach [1]. We developed
an algorithm that could find all solutions to a problem subject to certain

? Work performed while at CombiChem, Inc.

Preprint submitted to Elsevier Preprint 4 October 1999

additional side-constraints. We then had access to all solutions of the
original problem by enumerating all possible settings for the side-constraints.
We wanted to know how many solutions the original (unaltered) problem
admitted. We considered an online formulation for the following reasons. The
same solution could occur for many different settings of the side-constraints.
The solution method was expensive. More solutions were found than we could
store, yet solutions were very rare.

The difficult case to estimate is when simultaneously R is too large to store and
|R|/r is so small that we can not explicitly store the description of a sample
of {1, · · · , r} large enough to have a good chance of hitting R. We exhibit
a simple probabilistic algorithm that can determine an estimate p̃ such that
||R|/r − p̃| ≤ εp̃ in only one pass through the domain of L and using only
O (log r (log log r + log 1/δ) /ε2) words of storage. The parameter δ is the odds
that the algorithm fails.

Our solution is based on the observation: if we could draw a sample S ⊂
{1, · · · , r} uniformly at random such that |S| = k/ε2p (for some constant
k), then with high probability we have both that |S ∩ R|/|S| ≈ |R|/r = p
and that |S ∩ R| ∈ O (1/ε2) independent of p. This observation follows from
Stockmeyer’s log log r approximate counting scheme [7] or Sipser’s Coding
Lemma [6]. We produce a pairwise-independent sample, Sa,b, that requires
only a constant number of O (log r) sized words of storage to specify. We show
that with probability ≥ 3

4
we have both that the sample has nearly the correct

density (p) and that |Sa,b∩R| is small (O (1/ε2) words). To simplify our proofs
we work with |Sa,b ∩ R|/E[|Sa,b|] (an estimate of the density of our sample)
instead of the true sample density |Sa,b ∩ R|/|Sa,b|. We exhibit a procedure,
called scan, that produces an independent family of such samples so that
with overwhelming odds a good estimate can be found. The procedure scan
itself requires a rough estimate of p to design its samples. A procedure called
est that finds such an estimate by attempting a geometric sequence of values
against scan.

The relationship between random generation and counting is already very well
understood [2], our formulation emphasizes limited space in an online setting
and computing within a relative error ε (treated as a parameter rather than a
constant) instead of an absolute error. Standard methods require one of |R|,
r/|R| or maxx,y∈R |{i|L(i) = x}|/|{i|L(i) = y}| to be bounded by a polynomial
(we do not).

For integers x, r (r > 0) we define < x >r to be the unique integer y such
that 0 ≤ y ≤ r − 1 and r divides into x − y evenly. For technical reasons we
assume that r is a prime number.

2

2 Method

We define a procedure called scan(d, r, u, L(·), γ, ε). As above, d is the
cardinality of the domain, r is the cardinality of the co-domain (and prime),
and u is a bound (0 < u ≤ 1) such that u ≥ p = |R|/r. The function
L(·) takes an integer from {1, · · · , d} and returns an integer from {1, · · · , r}.
We define γ, ε as two control parameters (0 < γ ≤ 1, 0 < ε ≤ 1). The
procedure scan returns either (“estimate”,p̃) where p̃ is such that |p− p̃| ≤ εp̃
or returns (“bound”,p̃) which means that we have a probabilistic proof that
p ≤ p̃ ≤ u/2 or returns (“failure”,1). We prove that scan returns a correct
“estimate” or “bound” with probability at least 1−γ. This procedure simulates
drawing a pseudo-random sample Sa,b that is usually of size m (defined below).
The procedure then attempts to compute |Sa,b ∩ R|, which can be done as
long as |Sa,b ∩ R| ≤ l (where l is our space-bound). If |Sa,b ∩ R| > l the
sample is considered a failure (we account for the bias this introduces). The
sample Sa,b is the set of all i such that < a × i + b >r< m. The size of
the sample varies (|Sa,b| = m if a 6= 0 otherwise it is 0 or r, depending on
b), but we have E[|Sa,b|] = m. We show that with significant probability
the computation can be completed within the space-bound and we have
|Sa,b∩R|/E[|Sa,b|] ≈ p. Using a median finding trick we show, with probability
at least 1 − γ, a moderate number of repetitions, which can be performed
in parallel, are sufficient to guarantee that scan does not return “failure”
and and the returned “bound” or returned “estimate” is correct. A second
procedure est produces the necessary bounds for scan and completes the
argument. For notational clarity (e.g. avoiding some subscripts) scan and est
are described as making multiple passes through the domain of L(·). The one-
pass or online/oracle implementation should be obvious and is our primary
interest.

We define the procedure scan:

3

procedure scan(d, r, u, L(·), γ, ε)
set tol = εu/2(1 + ε) (the working tolerance)
set m =

⌈
64(1+ε)2

ε2u

⌉
(the target sample size)

set l = d(u+ tol)me+ 2 (how many of the samples we can count)
set t =

⌈
12 log 1

γ

⌉
+ 1 (the number of trials)

if max(l,m, 1/u) ≥ min(d, r) then {
return explicit count: (“estimate”,|R|/r)
(if this requires more than l words of storage return (“failure”,1))

}
for h = 1, · · · , t do {

pick ah ∈ {0, · · · , r − 1} uniformly at random
pick bh ∈ {0, · · · , r − 1} uniformly at random
set Vh = {}, zh = 0, i = 1
while i ≤ d and zh 6=∞ do {

if < ah × L(i) + bh >r< m and L(i) 6∈ Vh then {
if |Vh| ≤ l then {

set Vh = Vh ∪ {L(i)}
} else {

set zh =∞
}

}
set i = i+ 1

}
if zh 6=∞ then set zh = |Vh|/m

}
set p̃ = any median of z1, z2, · · · , zt
if p̃ is ∞ then return (“failure”,1)
if p̃ ≥ u/2(1 + ε) then return (“estimate”,p̃)
return (“bound”,p̃+ tol)

endprocedure

We have, for clarity, left open how the sets Vh are maintained. We can assume
that some efficient, O (log |Vh|) time per access, method is used.

Theorem 1 If u ≥ p then in procedure scan for each h:

Pr [zh =∞ or |zh − p| ≥ εu/2(1 + ε)] <
1

4
.

Proof: Using the assumption that u ≥ p, there is nothing to show unless
max(l,m, 1/u) < min(d, r). For each h = 1, · · · , t and j ∈ R, define a random
variable (random in the choice of ah, bh):

ζh,j =

 1 < ah × j + bh >r< m

0 otherwise
.

4

Observe that the ζh,j are identically distributed, and that Pr[ζh,j = 1] = m/r
and that ζh,j, ζh,k (for j 6= k) are pairwise-independent (see [3]). Define

ζh =
1

m

∑
j∈R

ζh,j .

We have l ≥ (u + εu/2(1 + ε))m so it is sufficient to show

Pr
[
|ζh − p| ≥ ε

4(1+ε)
u
]
< 1

4
. By the Chebychev inequality [3,4] we have

Pr

[
|ζh − p| >

ε

4(1 + ε)
u

]
≤ E

[
(ζh − p)2

]
/

(
εu

4(1 + ε)

)2

.

E
[
(ζh − p)2

]
= E


 1

m

∑
j∈R

(
ζh,j −

m

r

)2


= E

 1

m2

∑
j∈R

∑
k∈R

(ζh,j −m/r)(ζh,k −m/r)


(by pairwise-independence) = E

 1

m2

∑
j∈R

(ζh,j −m/r)2


(by identical distribution) =

1

m2
prE

[
(ζh,1 −m/r)2

]
=

1

m2
pr
(
m

r

)(
1− m

r

)
<p/m

Because u ≥ p and m ≥ 64(1 + ε)2/ε2u we have:

Pr

[
|ζh − p| ≥

ε

4(1 + ε)
u

]
<

p

m
/

(
εu

4(1 + ε)

)2

≤ 1/4 .

2

Theorem 2 If u ≥ p then procedure scan returns (“estimate”,p̃) such that
|p̃ − p| ≤ εp̃ or (“bound”,p̃) such that p ≤ p̃ < u/2 with probability at least
1− γ.

Proof: Again, assuming u ≥ p, there is nothing to show unless
max(l,m, 1/u) < min(d, r). For each h = 1, · · · , t, define

sh =

 1 zh =∞ or |zh − p| ≥ εu/2(1 + ε)

0 otherwise
.

5

Let g be the index such that zg = p̃ is the median of z1, · · · , zt picked by
algorithm scan. The ordering of the zh’s is a refinement of the ordering of the
sh’s, so sg is itself a median of s1, · · · , st. The sh (h = 1, · · · , t) are

⌈
12 log 1

γ

⌉
+1

independent random variables with E[sh] < 1/4 (by Theorem 1); using Jerrum,
Valianta and V. Vazirani’s Lemma 6.1 [2] we see that with probability at least
1−γ we have that sg = 0. When this is the case we have |p̃−p| < εu/2(1+ε). If
p̃ ≥ u/2(1 + ε) then scan returns p̃ as an “estimate” and we have |p̃−p| ≤ εp̃.
Otherwise p̃ < u/2(1 + ε) and scan returns “bound”, which is correct since
we have p ≤ p̃+ εu/2(1 + ε) < 1

2
u.

2

We now have enough tools to state our overall algorithm (d, r, L(·), δ, ε are
defined as before).
procedure est(d, r, L(·), δ, ε)

set w = dlog2 re + 1
for s = 0, · · · , w do {

set (messages,p̃s) = scan(d, r, 2−s, L(·), δ/(w + 1), ε)
}
set (messagew+1,p̃w+1) = (“failure”,1)
set s = 0
while messages is “bound” do {

set s = s+ 1
}
return (messages,p̃s)

endprocedure

We point out that all of the results from the “for s” loop of est can
be computed in a single pass through the domain of L(·) using only
O (log r (log log r + log 1/δ) /ε2) words of storage. This can be accomplished
by reversing the nesting of the “for s” loop in est with the “while i” loop in
scan and maintaining a separate copy of each variable in scan for each value
of s = 0, · · · , w. Therefore we can apply our algorithm in an online setting.

After this data is assembled, est examines some of the returned “messages”
in order. Let k be the larger integer such that 2−k >= p. For each s = 0, · · · k
algorithm scan was called with a correct upper bound for p. For each of these
calls to scan Theorem 2 applies and we have that the returned information
(messages,p̃s) is correct with probability at least 1− δ/(w + 1). The disjoint-
union bound tells us with probability at least 1 − (k + 1)δ/(w + 1) ≥ 1 − δ
we have: all of (message0,p̃0) through (messagek,p̃k) are correct. When this is
the case we have messages = “bound” for s < k, messagek = “estimate” and
no (messages,p̃s) with s > k is examined by est. So with probability at least
1− δ algorithm est returns a bound within the desired tolerance.

We note an obvious variant of the above algorithm would be to change the

6

upper bound by a factor of 1+ε (instead of 2) at each stage. Then scan would
only have to verify the given estimate, but this would blow up the number of
stages needed by est by a factor of O(1/ log(1 + ε)) ≈ O(1/ε).

3 Sampling

Another problem is generating a sample x such that x ∈ R and Pr[x = y|y ∈
R] ≈ 1/|R|. One can, of course, use the counting methods of [2], but a simple
direct method would be of interest.

A natural candidate method is to choose a uniformly at random from
{0, · · · , r − 1}, choose b uniformly at random from {0, · · · , r − 1} and set
Sa,b = R ∩ {i|i = 1, · · · , r and < a × i + b >r< m}. If |Sa,b| ≤ l (l as in
procedure scan) we return x picked uniformly at random from Sa,b, otherwise
we return “failure.” Unfortunately, x is not always nearly uniformly distributed
in R. This is not due to the rejection of sets Sa,b where |Sa,b| > l. The reason
is that, even though the random variables

χx =

 1 x ∈ Sa,b
0 otherwise

are identically distributed for all x ∈ R (even pairwise-independent) the
random variables

ρx =

 1/|Sa,b| x ∈ Sa,b
0 otherwise

are not identically distributed for all x ∈ R.

An example of this is found by examining the multiplication table of the group
ZZ7 which corresponds in our algorithm to: d = 7, r = 7,m = 4, R = {1, 2, 3, 4}.
We see that the image of symbol 4 (under the mapping x→< a×x+b >r) can
occur alone (pick a = 1, b = 3) but that the image of symbol 2 never occurs
in a sample by itself. The image of symbol 2 is always in-between the image
of two other symbols from {1, 3, 4} that are within 5 units from each other
(so any 4-unit window over the image of 2 picks up one of the other symbols).
Thus 4 occurs in sets Sa,b where |Sa,b| = 1, and 2 does not. In fact the sampling
method mentioned above generates the symbol 4 more often than the symbol
2.

7

4 Acknowledgements

The author would like to thank the editor and referees for their patient
assistance.

References

[1] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms,
McGraw Hill, 1990.

[2] M. Jerrum, L. G. Valiant, and V. Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Computer
Science, 1986, pp. 169–188.

[3] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton
University Press, 1996.

[4] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press, 1995.

[5] M. Plunkett and J. Ellman, Combinatorial chemistry and new drugs,
Scientific American, 276, 1997, pp. 68–73.

[6] M. Sipser, A complexity theoretic approach to randomness, in 15th Symposium
on the Theory of Computing, ACM, 1983, pp. 330–335.

[7] L. Stockmeyer, The complexity of approximate counting, in 15th Symposium
on the Theory of Computing, ACM, 1983, pp. 118–126.

8

